

Michael S. Wong, Ph.D.

Department of Chemical and Biomolecular Engineering
Nanotechnology Enabled Water Treatment Center

Catalysis and Nanomaterials
Materials Chemistry
Photovoltaics
Rechargeable Batteries
Green Chemistry
Water Remediation
Enhanced Oil Recovery

SELECTED PATENTS

- Method to Fabricate Microcapsules from Polymers and Charged Nanoparticles (US 7,829,119)
- Removal of Heteroatom-Containing Compounds from Fluids (WO2017100617A1)
- Multimetallic Nanoshells For Monitoring Chemical Reactions (US 8.605,280)

APPLICATIONS

- Chemicals production from oil/gas and biomass
- Downhole oil detection and enhanced recovery
- Energy storage and conversion
- Water cleanup/purification

KEY PROJECTS

- Structure-property analysis of bimetallic catalysts
- Nanoparticle synthesis and catalysis
- Heterogeneous catalysis for water cleanup
- Biomass upgrading chemistry
- Hydrocarbon upgrading chemistry
- Nanoparticle assembly
- Nanomaterials for enhanced oil recovery and downhole detection
- Advanced materials processing of microcapsules, quantum dots, and supported metal oxides.

RECENT PUBLICATIONS

- Guo et al "Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts" ACS Catalysis, 2018.
- Li et al "Two Distinctive Energy Migration Pathways of Monolayer Molecules on Metal Nanoparticle Surfaces" *Nature Communications*, 2016.
- Heck et al "Nanocatalysts for Groundwater Remediation" *Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity*, **2016**.

WONG LAB WEBSITE

http://www.ruf.rice.edu/~wonglab/index.html